Astrophotography

Astrophotography is a specialized type of photography for recording photos of astronomical objects, celestial events, and large areas of the night sky. The first photograph of an astronomical object (the Moon) was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, astrophotography has the ability to image objects invisible to the human eye such as dim stars, nebulae, and galaxies. This is done by long time exposure since both film and digital cameras can accumulate and sum light photons over these long periods of time.

Photography revolutionized the field of professional astronomical research, with long time exposures recording hundreds of thousands of new stars and nebulae that were invisible to the human eye, leading to specialized and ever larger optical telescopes that were essentially big cameras designed to record light using photographic plates. Astrophotography had an early role in sky surveys and star classification but over time it has given way to more sophisticated equipment and techniques designed for specific fields of scientific research, with image sensors becoming just one of many forms of sensor.

Astrophotography is a large subdiscipline in amateur astronomy usually seeking aesthetically pleasing images rather than scientific data. Amateurs use a wide range of special equipment and techniques.

Overview


With a few exceptions, astronomical photography employs long exposures since both film and digital imaging devices can accumulate and light photons over long periods of time. The amount of light hitting the film or detector is also increased by increasing the diameter of the primary optics (the objective) being used. Urban areas produce light pollution so equipment and observatories doing astronomical imaging are often located in remote locations to allow long exposures without the film or detectors being swamped with stray light.

Since the Earth is constantly rotating, telescopes and equipment are rotated in the opposite direction to follow the apparent motion of the stars overhead (called diurnal motion). This is accomplished by using either equatorial or computer-controlled altazimuth telescope mounts to keep celestial objects centered while the earth rotates. All telescope mount systems suffer from induced tracking error due to imperfect motor drives and mechanical sag of the telescope. Tracking errors are corrected by keeping a selected aiming point, usually a bright guide star, centered during the entire exposure. Sometimes (as in the case of comets) the object to be imaged is moving, so the telescope has to be kept constantly centered on that object. This guiding is done through a second co-mounted telescope called a “guide scope” or via some type of “off-axis guider”, a device with a prism or optical beam splitter that allows the observer to view the same image in the telescope that is taking the picture. Guiding was formerly done manually throughout the exposure with an observer standing at (or riding inside) the telescope making corrections to keep a cross hair on the guide star. Since the advent of computer-controlled systems this is accomplished by an automated systems in professional and even amateur equipment.

Astronomical photography is one of the earliest types of scientific photography and almost from its inception it diversified into subdisciplines that each have a specific goal including star cartography, astrometry, stellar classification, photometry, spectroscopy, polarimetry, and the discovery of astronomical objects such as asteroids, meteors, comets, variable stars, novae, and even unknown planets. These all require specialized equipment such as telescopes designed for precise imaging, for wide field of view (such as Schmidt cameras), or for work at specific wavelengths of light. Astronomical CCD cameras may use cryogenic cooling to reduce thermal noise and to allow the detector to record images in other spectra such as in infrared astronomy. Specialized filters are also used to record images in specific wavelengths.

History


The development of astrophotography as a scientific tool was pioneered in the mid-19th century for the most part by experimenters and amateur astronomers, or so-called “gentleman scientists” (although, as in other scientific fields, these were not always men). Because of the very long exposures needed to capture relatively faint astronomical objects, many technological problems had to be overcome. These included making telescopes rigid enough so they wouldn’t sag out of focus during the exposure, building clock drives that could rotate the telescope mount at a constant rate, and developing ways to accurately keep a telescope aimed at a fixed point over a long period of time. Early photographic processes also had limitations. The daguerreotype process was far too slow to record anything but the brightest objects, and the wet plate collodion process limited exposures to the time the plate could stay wet.

Amateur Astrophotography


Astrophotography is a popular hobby among photographers and amateur astronomers. Images of the night sky can be obtained with the most basic film and digital cameras. For simple star trails, no additional equipment may be necessary other than common tripods. There is a wide range of commercial equipment geared toward basic and advanced astrophotography. Amateur astronomers and amateur telescope makers also use homemade equipment and modified devices.

Astronomy


Astronomy (from Greek: ἀστρονομία) is a natural science that studies celestial objects and phenomena. It applies mathematics, physics, and chemistry, in an effort to explain the origin of those objects and phenomena and their evolution. Objects of interest include planets, moons, stars, galaxies, and comets; the phenomena include supernova explosions, gamma ray bursts, and cosmic microwave background radiation. More generally, all phenomena that originate outside Earth’s atmosphere are within the purview of astronomy. A related but distinct subject, physical cosmology, is concerned with the study of the Universe as a whole.

Astronomy is one of the oldest of the natural sciences. The early civilizations in recorded history, such as the Babylonians, Greeks, Indians, Egyptians, Nubians, Iranians, Chinese, Maya, and many ancient indigenous peoples of the Americas performed methodical observations of the night sky. Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy and the making of calendars, but professional astronomy is now often considered to be synonymous with astrophysics.

During the 20th century, the field of professional astronomy split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects, which is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. The two fields complement each other, with theoretical astronomy seeking to explain observational results and observations being used to confirm theoretical results.
Astronomy is one of the few sciences where amateurs still play an active role, especially in the discovery and observation of transient phenomena. Amateur astronomers have made and contributed to many important astronomical discoveries, such as finding new comets.